Operations & Algebraic Thinking							
Indicator	Date	Date	Date	Date	Date		
	Taught	Retaught	Reviewed	Assessed	ReAssessed		
Represent and solve problems involving multiplication and division.							
3.OA.1.Interpret products of whole							
numbers, e.g., interpret 5 × 7 as the							
total number of objects in 5 groups							
of 7 objects each. For example,							
describe a context in which a total							
number of objects can be expressed							
as							
5 × 7.							
3.OA.2. Interpret whole-number							
quotients of whole numbers, e.g.,							
interpret 56 ÷ 8 as the number of							
objects in each share when 56							
objects are partitioned equally into							
8 shares, or as a number of shares							
when 56 objects are partitioned							
into equal shares of 8 objects each.							
For example, describe a context in							
which a number of shares or a							
number of groups can be expressed							
as 56 ÷ 8.							
3.OA.3. Use multiplication and							
division within 100 to solve word							
problems in situations involving							
equal groups, arrays, and							
measurement quantities, e.g., by							
using drawings and equations with a							
symbol for the unknown number to							
represent the problem.							
3.OA.4. Determine the unknown							
whole number in a multiplication or							
division equation relating three							
whole numbers. For example,							
determine the unknown number							
that makes the equation true in							
each of the equations $8 \times ? = 48, 5 =$							
_ ÷ 3, 6 × 6 = ?							

Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date ReAssessed
Understand propertie					Reassessed
	multiplicatio			ip between	
		ii aiiu uivisio			
3.OA.5. Apply properties of					
operations as strategies to					
multiply and divide. Examples:					
If $6 \times 4 = 24$ is known, then 4×6					
= 24 is also known.					
(Commutative property of					
multiplication.) $3 \times 5 \times 2$ can be					
found by $3 \times 5 = 15$, then $15 \times 2 =$					
30, or by $5 \times 2 = 10$, then $3 \times 10 =$					
30. (Associative property of					
multiplication.) Knowing that 8					
\times 5 = 40 and 8 \times 2 = 16, one can					
$find 8 \times 7 \ as \ 8 \times (5 + 2) = (8 \times 5) + $					
$(8 \times 2) = 40 + 16 = 56.$					
(Distributive property.)					
3.OA.6. Understand division as					
an unknown-factor problem. For					
example, find 32 ÷ 8 by finding					
the number that makes 32 when					
multiplied by 8.					
M	ultiply and d	ivide within	100.		
3.OA.7.Fluently multiply and					
divide within 100, using					
strategies such as the					
relationship between					
multiplication and division (e.g.,					
knowing that $8 \times 5 = 40$, one					
knows $40 \div 5 = 8$) or properties					
of operations. By the end of					
Grade 3, know from memory all					
products of two one-digit					
numbers.					

Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date ReAssessed	
Solve problems involving the four operations, and identify and explain patterns in arithmetic.						
3.OA.8. Solve two-step word						
problems using the four						
operations. Represent these						
problems using equations with a						
letter standing for the unknown						
quantity. Assess the						
reasonableness of answers using						
mental computation and						
estimation strategies including						
rounding.						
3.OA.9. Identify arithmetic						
patterns (including patterns in						
the addition table or						
multiplication table), and						
explain them using properties of						
operations. For example,						
observe that 4 times a number is						
always even, and explain why 4						
times a number can be						
decomposed into two equal						
addends.						

Number & Operations in Base Ten						
Indicator	Date	Date	Date	Date	Date	
	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Use place value understanding an	d properties	of operation	ns to perforn	n multi-digit	arithmetic.	
3.NBT.1. Use place value						
understanding to round whole						
numbers to the nearest 10 or						
100.						
3.NBT.2. Fluently add and						
subtract within 1000 using						
strategies and algorithms based						
on place value, properties of						
operations, and/or the						
relationship between addition						
and subtraction.						
3.NBT.3. Multiply one-digit						
whole numbers by multiples of						
10 in the range 10-90 (e.g., 9 ×						
80, 5 × 60) using strategies						
based on place value and						
properties of operations.						

Number & Operations – Fractions						
Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date ReAssessed	
Develop understanding of fractions as numbers.						
3.NF.1. Understand a fraction						
1/b as the quantity formed by 1						
part when a whole is partitioned						
into b equal parts; understand a						
fraction a/b as the quantity						
formed by a parts of size 1/b.						
3.NF.2. Understand a fraction as						
a number on the number line;						
represent fractions on a number						
line diagram.						
Represent a fraction 1/b on a number						
line diagram by defining the interval						
partitioning it into b equal parts.						
Recognize that each part has size 1/b						
and that the endpoint of the part based						
at 0 locates the number 1/b on the						
number line.						
. ,						
· ·						
•						
from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the						

Indicator	Date	Date	Date	Date	Date
maicator	Taught	Retaught	Reviewed	Assessed	ReAssessed
3.NF.3. Explain equivalence of					
fractions in special cases, and					
compare fractions by reasoning					
about their size.					
Understand two fractions as equivalent					
(equal) if they are the same size, or the					
same point on a number line.					
Recognize and generate simple					
equivalent fractions, e.g., $1/2 = 2/4$, $4/6$					
= 2/3). Explain why the fractions are					
equivalent, e.g., by using a visual					
fraction model.					
Express whole numbers as fractions,					
and recognize fractions that are					
equivalent to whole numbers.					
Examples: Express 3 in the form $3 = 3/1$;					
recognize that 6/1 = 6; locate 4/4 and 1					
at the same point of a number line					
diagram.					
Compare two fractions with the same					
numerator or the same denominator by					
reasoning about their size. Recognize					
that comparisons are valid only when					
the two fractions refer to the same					
whole. Record the results of					
comparisons with the symbols >, =, or <,					
and justify the conclusions, e.g., by					
using a visual fraction model.					

Measurement and Data						
Indicator	Date	Date	Date	Date	Date	
	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Solve problems involving m				vals of time	, liquid	
	ımes, and m	nasses of ob	jects.	ı		
3.MD.1. Tell and write time to the						
nearest minute and measure time						
intervals in minutes. Solve word						
problems involving addition and						
subtraction of time intervals in						
minutes, e.g., by representing the						
problem on a number line diagram.						
3.MD.2. Measure and estimate						
liquid volumes and masses of						
objects using standard units of						
grams (g), kilograms (kg), and liters						
(l).1 Add, subtract, multiply, or						
divide to solve one-step word						
problems involving masses or						
volumes that are given in the same						
units, e.g., by using drawings (such						
as a beaker with a measurement						
scale) to represent the problem. ²						
	Represent and	d interpret da	ta.			
3.MD.3. Draw a scaled picture						
graph and a scaled bar graph to						
represent a data set with several						
categories. Solve one- and two-						
step "how many more" and "how						
many less" problems using						
information presented in scaled						
bar graphs. For example, draw a						
bar graph in which each square in						
the bar graph might represent 5						
pets.						
3.MD.4. Generate measurement						
data by measuring lengths using						
rulers marked with halves and						
fourths of an inch. Show the data						
by making a line plot, where the						
horizontal scale is marked off in						
appropriate units— whole						
numbers, halves, or quarters.						

Indicator	Date	Date	Date	Date	Date	
Goometric measuremen	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.						
3.MD.5. Recognize area as an						
attribute of plane figures and						
understand concepts of area						
measurement.						
A square with side length 1 unit, called						
"a unit square," is said to have "one						
square unit" of area, and can be used to						
measure area.						
A plane figure which can be covered						
without gaps or overlaps by n unit						
squares is said to have an area of n						
square units.						
3.MD.6. Measure areas by						
counting unit squares (square						
cm, square m, square in, square						
ft, and improvised units).						
3.MD.7. Relate area to the						
operations of multiplication and						
addition.						
Find the area of a rectangle with whole-						
number side lengths by tiling it, and						
show that the area is the same as would						
be found by multiplying the side						
lengths.						
Multiply side lengths to find areas of						
rectangles with whole-number side lengths in the context of solving real						
world and mathematical problems, and						
represent whole-number products as						
rectangular areas in mathematical						
reasoning.						
Use tiling to show in a concrete case						
that the area of a rectangle with whole-						
number side lengths a and b + c is the						
sum of $a \times b$ and $a \times c$. Use area models						
to represent the distributive property in						
mathematical reasoning.						
Recognize area as additive. Find areas						
of rectilinear figures by decomposing						
them into non-overlapping rectangles and adding the areas of the non-						
overlapping parts, applying this						
technique to solve real world problems.						
cestingue to solve real world problems.		<u> </u>	<u> </u>	<u> </u>		

Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date ReAssessed		
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.							
3.MD.8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown							
side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.							
		metry					
	with shapes	and their at	ttributes.				
3.G.1. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.							
.G.2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.							